1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302 |
- // Copyright 2007, Google Inc.
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- // Google Mock - a framework for writing C++ mock classes.
- //
- // The ACTION* family of macros can be used in a namespace scope to
- // define custom actions easily. The syntax:
- //
- // ACTION(name) { statements; }
- //
- // will define an action with the given name that executes the
- // statements. The value returned by the statements will be used as
- // the return value of the action. Inside the statements, you can
- // refer to the K-th (0-based) argument of the mock function by
- // 'argK', and refer to its type by 'argK_type'. For example:
- //
- // ACTION(IncrementArg1) {
- // arg1_type temp = arg1;
- // return ++(*temp);
- // }
- //
- // allows you to write
- //
- // ...WillOnce(IncrementArg1());
- //
- // You can also refer to the entire argument tuple and its type by
- // 'args' and 'args_type', and refer to the mock function type and its
- // return type by 'function_type' and 'return_type'.
- //
- // Note that you don't need to specify the types of the mock function
- // arguments. However rest assured that your code is still type-safe:
- // you'll get a compiler error if *arg1 doesn't support the ++
- // operator, or if the type of ++(*arg1) isn't compatible with the
- // mock function's return type, for example.
- //
- // Sometimes you'll want to parameterize the action. For that you can use
- // another macro:
- //
- // ACTION_P(name, param_name) { statements; }
- //
- // For example:
- //
- // ACTION_P(Add, n) { return arg0 + n; }
- //
- // will allow you to write:
- //
- // ...WillOnce(Add(5));
- //
- // Note that you don't need to provide the type of the parameter
- // either. If you need to reference the type of a parameter named
- // 'foo', you can write 'foo_type'. For example, in the body of
- // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
- // of 'n'.
- //
- // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
- // multi-parameter actions.
- //
- // For the purpose of typing, you can view
- //
- // ACTION_Pk(Foo, p1, ..., pk) { ... }
- //
- // as shorthand for
- //
- // template <typename p1_type, ..., typename pk_type>
- // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
- //
- // In particular, you can provide the template type arguments
- // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
- // although usually you can rely on the compiler to infer the types
- // for you automatically. You can assign the result of expression
- // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
- // pk_type>. This can be useful when composing actions.
- //
- // You can also overload actions with different numbers of parameters:
- //
- // ACTION_P(Plus, a) { ... }
- // ACTION_P2(Plus, a, b) { ... }
- //
- // While it's tempting to always use the ACTION* macros when defining
- // a new action, you should also consider implementing ActionInterface
- // or using MakePolymorphicAction() instead, especially if you need to
- // use the action a lot. While these approaches require more work,
- // they give you more control on the types of the mock function
- // arguments and the action parameters, which in general leads to
- // better compiler error messages that pay off in the long run. They
- // also allow overloading actions based on parameter types (as opposed
- // to just based on the number of parameters).
- //
- // CAVEAT:
- //
- // ACTION*() can only be used in a namespace scope as templates cannot be
- // declared inside of a local class.
- // Users can, however, define any local functors (e.g. a lambda) that
- // can be used as actions.
- //
- // MORE INFORMATION:
- //
- // To learn more about using these macros, please search for 'ACTION' on
- // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
- // IWYU pragma: private, include "gmock/gmock.h"
- // IWYU pragma: friend gmock/.*
- #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
- #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
- #ifndef _WIN32_WCE
- #include <errno.h>
- #endif
- #include <algorithm>
- #include <functional>
- #include <memory>
- #include <string>
- #include <tuple>
- #include <type_traits>
- #include <utility>
- #include "gmock/internal/gmock-internal-utils.h"
- #include "gmock/internal/gmock-port.h"
- #include "gmock/internal/gmock-pp.h"
- #ifdef _MSC_VER
- #pragma warning(push)
- #pragma warning(disable : 4100)
- #endif
- namespace testing {
- // To implement an action Foo, define:
- // 1. a class FooAction that implements the ActionInterface interface, and
- // 2. a factory function that creates an Action object from a
- // const FooAction*.
- //
- // The two-level delegation design follows that of Matcher, providing
- // consistency for extension developers. It also eases ownership
- // management as Action objects can now be copied like plain values.
- namespace internal {
- // BuiltInDefaultValueGetter<T, true>::Get() returns a
- // default-constructed T value. BuiltInDefaultValueGetter<T,
- // false>::Get() crashes with an error.
- //
- // This primary template is used when kDefaultConstructible is true.
- template <typename T, bool kDefaultConstructible>
- struct BuiltInDefaultValueGetter {
- static T Get() { return T(); }
- };
- template <typename T>
- struct BuiltInDefaultValueGetter<T, false> {
- static T Get() {
- Assert(false, __FILE__, __LINE__,
- "Default action undefined for the function return type.");
- return internal::Invalid<T>();
- // The above statement will never be reached, but is required in
- // order for this function to compile.
- }
- };
- // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
- // for type T, which is NULL when T is a raw pointer type, 0 when T is
- // a numeric type, false when T is bool, or "" when T is string or
- // std::string. In addition, in C++11 and above, it turns a
- // default-constructed T value if T is default constructible. For any
- // other type T, the built-in default T value is undefined, and the
- // function will abort the process.
- template <typename T>
- class BuiltInDefaultValue {
- public:
- // This function returns true if and only if type T has a built-in default
- // value.
- static bool Exists() { return ::std::is_default_constructible<T>::value; }
- static T Get() {
- return BuiltInDefaultValueGetter<
- T, ::std::is_default_constructible<T>::value>::Get();
- }
- };
- // This partial specialization says that we use the same built-in
- // default value for T and const T.
- template <typename T>
- class BuiltInDefaultValue<const T> {
- public:
- static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
- static T Get() { return BuiltInDefaultValue<T>::Get(); }
- };
- // This partial specialization defines the default values for pointer
- // types.
- template <typename T>
- class BuiltInDefaultValue<T*> {
- public:
- static bool Exists() { return true; }
- static T* Get() { return nullptr; }
- };
- // The following specializations define the default values for
- // specific types we care about.
- #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
- template <> \
- class BuiltInDefaultValue<type> { \
- public: \
- static bool Exists() { return true; } \
- static type Get() { return value; } \
- }
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
- // There's no need for a default action for signed wchar_t, as that
- // type is the same as wchar_t for gcc, and invalid for MSVC.
- //
- // There's also no need for a default action for unsigned wchar_t, as
- // that type is the same as unsigned int for gcc, and invalid for
- // MSVC.
- #if GMOCK_WCHAR_T_IS_NATIVE_
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
- #endif
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
- GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
- #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
- // Partial implementations of metaprogramming types from the standard library
- // not available in C++11.
- template <typename P>
- struct negation
- // NOLINTNEXTLINE
- : std::integral_constant<bool, bool(!P::value)> {};
- // Base case: with zero predicates the answer is always true.
- template <typename...>
- struct conjunction : std::true_type {};
- // With a single predicate, the answer is that predicate.
- template <typename P1>
- struct conjunction<P1> : P1 {};
- // With multiple predicates the answer is the first predicate if that is false,
- // and we recurse otherwise.
- template <typename P1, typename... Ps>
- struct conjunction<P1, Ps...>
- : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
- template <typename...>
- struct disjunction : std::false_type {};
- template <typename P1>
- struct disjunction<P1> : P1 {};
- template <typename P1, typename... Ps>
- struct disjunction<P1, Ps...>
- // NOLINTNEXTLINE
- : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
- template <typename...>
- using void_t = void;
- // Detects whether an expression of type `From` can be implicitly converted to
- // `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
- //
- // An expression e can be implicitly converted to a type T if and only if
- // the declaration T t=e; is well-formed, for some invented temporary
- // variable t ([dcl.init]).
- //
- // [conv]/2 implies we can use function argument passing to detect whether this
- // initialization is valid.
- //
- // Note that this is distinct from is_convertible, which requires this be valid:
- //
- // To test() {
- // return declval<From>();
- // }
- //
- // In particular, is_convertible doesn't give the correct answer when `To` and
- // `From` are the same non-moveable type since `declval<From>` will be an rvalue
- // reference, defeating the guaranteed copy elision that would otherwise make
- // this function work.
- //
- // REQUIRES: `From` is not cv void.
- template <typename From, typename To>
- struct is_implicitly_convertible {
- private:
- // A function that accepts a parameter of type T. This can be called with type
- // U successfully only if U is implicitly convertible to T.
- template <typename T>
- static void Accept(T);
- // A function that creates a value of type T.
- template <typename T>
- static T Make();
- // An overload be selected when implicit conversion from T to To is possible.
- template <typename T, typename = decltype(Accept<To>(Make<T>()))>
- static std::true_type TestImplicitConversion(int);
- // A fallback overload selected in all other cases.
- template <typename T>
- static std::false_type TestImplicitConversion(...);
- public:
- using type = decltype(TestImplicitConversion<From>(0));
- static constexpr bool value = type::value;
- };
- // Like std::invoke_result_t from C++17, but works only for objects with call
- // operators (not e.g. member function pointers, which we don't need specific
- // support for in OnceAction because std::function deals with them).
- template <typename F, typename... Args>
- using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
- template <typename Void, typename R, typename F, typename... Args>
- struct is_callable_r_impl : std::false_type {};
- // Specialize the struct for those template arguments where call_result_t is
- // well-formed. When it's not, the generic template above is chosen, resulting
- // in std::false_type.
- template <typename R, typename F, typename... Args>
- struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
- : std::conditional<
- std::is_void<R>::value, //
- std::true_type, //
- is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
- // Like std::is_invocable_r from C++17, but works only for objects with call
- // operators. See the note on call_result_t.
- template <typename R, typename F, typename... Args>
- using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
- // Like std::as_const from C++17.
- template <typename T>
- typename std::add_const<T>::type& as_const(T& t) {
- return t;
- }
- } // namespace internal
- // Specialized for function types below.
- template <typename F>
- class OnceAction;
- // An action that can only be used once.
- //
- // This is accepted by WillOnce, which doesn't require the underlying action to
- // be copy-constructible (only move-constructible), and promises to invoke it as
- // an rvalue reference. This allows the action to work with move-only types like
- // std::move_only_function in a type-safe manner.
- //
- // For example:
- //
- // // Assume we have some API that needs to accept a unique pointer to some
- // // non-copyable object Foo.
- // void AcceptUniquePointer(std::unique_ptr<Foo> foo);
- //
- // // We can define an action that provides a Foo to that API. Because It
- // // has to give away its unique pointer, it must not be called more than
- // // once, so its call operator is &&-qualified.
- // struct ProvideFoo {
- // std::unique_ptr<Foo> foo;
- //
- // void operator()() && {
- // AcceptUniquePointer(std::move(Foo));
- // }
- // };
- //
- // // This action can be used with WillOnce.
- // EXPECT_CALL(mock, Call)
- // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
- //
- // // But a call to WillRepeatedly will fail to compile. This is correct,
- // // since the action cannot correctly be used repeatedly.
- // EXPECT_CALL(mock, Call)
- // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
- //
- // A less-contrived example would be an action that returns an arbitrary type,
- // whose &&-qualified call operator is capable of dealing with move-only types.
- template <typename Result, typename... Args>
- class OnceAction<Result(Args...)> final {
- private:
- // True iff we can use the given callable type (or lvalue reference) directly
- // via StdFunctionAdaptor.
- template <typename Callable>
- using IsDirectlyCompatible = internal::conjunction<
- // It must be possible to capture the callable in StdFunctionAdaptor.
- std::is_constructible<typename std::decay<Callable>::type, Callable>,
- // The callable must be compatible with our signature.
- internal::is_callable_r<Result, typename std::decay<Callable>::type,
- Args...>>;
- // True iff we can use the given callable type via StdFunctionAdaptor once we
- // ignore incoming arguments.
- template <typename Callable>
- using IsCompatibleAfterIgnoringArguments = internal::conjunction<
- // It must be possible to capture the callable in a lambda.
- std::is_constructible<typename std::decay<Callable>::type, Callable>,
- // The callable must be invocable with zero arguments, returning something
- // convertible to Result.
- internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
- public:
- // Construct from a callable that is directly compatible with our mocked
- // signature: it accepts our function type's arguments and returns something
- // convertible to our result type.
- template <typename Callable,
- typename std::enable_if<
- internal::conjunction<
- // Teach clang on macOS that we're not talking about a
- // copy/move constructor here. Otherwise it gets confused
- // when checking the is_constructible requirement of our
- // traits above.
- internal::negation<std::is_same<
- OnceAction, typename std::decay<Callable>::type>>,
- IsDirectlyCompatible<Callable>> //
- ::value,
- int>::type = 0>
- OnceAction(Callable&& callable) // NOLINT
- : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
- {}, std::forward<Callable>(callable))) {}
- // As above, but for a callable that ignores the mocked function's arguments.
- template <typename Callable,
- typename std::enable_if<
- internal::conjunction<
- // Teach clang on macOS that we're not talking about a
- // copy/move constructor here. Otherwise it gets confused
- // when checking the is_constructible requirement of our
- // traits above.
- internal::negation<std::is_same<
- OnceAction, typename std::decay<Callable>::type>>,
- // Exclude callables for which the overload above works.
- // We'd rather provide the arguments if possible.
- internal::negation<IsDirectlyCompatible<Callable>>,
- IsCompatibleAfterIgnoringArguments<Callable>>::value,
- int>::type = 0>
- OnceAction(Callable&& callable) // NOLINT
- // Call the constructor above with a callable
- // that ignores the input arguments.
- : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
- std::forward<Callable>(callable)}) {}
- // We are naturally copyable because we store only an std::function, but
- // semantically we should not be copyable.
- OnceAction(const OnceAction&) = delete;
- OnceAction& operator=(const OnceAction&) = delete;
- OnceAction(OnceAction&&) = default;
- // Invoke the underlying action callable with which we were constructed,
- // handing it the supplied arguments.
- Result Call(Args... args) && {
- return function_(std::forward<Args>(args)...);
- }
- private:
- // An adaptor that wraps a callable that is compatible with our signature and
- // being invoked as an rvalue reference so that it can be used as an
- // StdFunctionAdaptor. This throws away type safety, but that's fine because
- // this is only used by WillOnce, which we know calls at most once.
- //
- // Once we have something like std::move_only_function from C++23, we can do
- // away with this.
- template <typename Callable>
- class StdFunctionAdaptor final {
- public:
- // A tag indicating that the (otherwise universal) constructor is accepting
- // the callable itself, instead of e.g. stealing calls for the move
- // constructor.
- struct CallableTag final {};
- template <typename F>
- explicit StdFunctionAdaptor(CallableTag, F&& callable)
- : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
- // Rather than explicitly returning Result, we return whatever the wrapped
- // callable returns. This allows for compatibility with existing uses like
- // the following, when the mocked function returns void:
- //
- // EXPECT_CALL(mock_fn_, Call)
- // .WillOnce([&] {
- // [...]
- // return 0;
- // });
- //
- // Such a callable can be turned into std::function<void()>. If we use an
- // explicit return type of Result here then it *doesn't* work with
- // std::function, because we'll get a "void function should not return a
- // value" error.
- //
- // We need not worry about incompatible result types because the SFINAE on
- // OnceAction already checks this for us. std::is_invocable_r_v itself makes
- // the same allowance for void result types.
- template <typename... ArgRefs>
- internal::call_result_t<Callable, ArgRefs...> operator()(
- ArgRefs&&... args) const {
- return std::move(*callable_)(std::forward<ArgRefs>(args)...);
- }
- private:
- // We must put the callable on the heap so that we are copyable, which
- // std::function needs.
- std::shared_ptr<Callable> callable_;
- };
- // An adaptor that makes a callable that accepts zero arguments callable with
- // our mocked arguments.
- template <typename Callable>
- struct IgnoreIncomingArguments {
- internal::call_result_t<Callable> operator()(Args&&...) {
- return std::move(callable)();
- }
- Callable callable;
- };
- std::function<Result(Args...)> function_;
- };
- // When an unexpected function call is encountered, Google Mock will
- // let it return a default value if the user has specified one for its
- // return type, or if the return type has a built-in default value;
- // otherwise Google Mock won't know what value to return and will have
- // to abort the process.
- //
- // The DefaultValue<T> class allows a user to specify the
- // default value for a type T that is both copyable and publicly
- // destructible (i.e. anything that can be used as a function return
- // type). The usage is:
- //
- // // Sets the default value for type T to be foo.
- // DefaultValue<T>::Set(foo);
- template <typename T>
- class DefaultValue {
- public:
- // Sets the default value for type T; requires T to be
- // copy-constructable and have a public destructor.
- static void Set(T x) {
- delete producer_;
- producer_ = new FixedValueProducer(x);
- }
- // Provides a factory function to be called to generate the default value.
- // This method can be used even if T is only move-constructible, but it is not
- // limited to that case.
- typedef T (*FactoryFunction)();
- static void SetFactory(FactoryFunction factory) {
- delete producer_;
- producer_ = new FactoryValueProducer(factory);
- }
- // Unsets the default value for type T.
- static void Clear() {
- delete producer_;
- producer_ = nullptr;
- }
- // Returns true if and only if the user has set the default value for type T.
- static bool IsSet() { return producer_ != nullptr; }
- // Returns true if T has a default return value set by the user or there
- // exists a built-in default value.
- static bool Exists() {
- return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
- }
- // Returns the default value for type T if the user has set one;
- // otherwise returns the built-in default value. Requires that Exists()
- // is true, which ensures that the return value is well-defined.
- static T Get() {
- return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
- : producer_->Produce();
- }
- private:
- class ValueProducer {
- public:
- virtual ~ValueProducer() {}
- virtual T Produce() = 0;
- };
- class FixedValueProducer : public ValueProducer {
- public:
- explicit FixedValueProducer(T value) : value_(value) {}
- T Produce() override { return value_; }
- private:
- const T value_;
- FixedValueProducer(const FixedValueProducer&) = delete;
- FixedValueProducer& operator=(const FixedValueProducer&) = delete;
- };
- class FactoryValueProducer : public ValueProducer {
- public:
- explicit FactoryValueProducer(FactoryFunction factory)
- : factory_(factory) {}
- T Produce() override { return factory_(); }
- private:
- const FactoryFunction factory_;
- FactoryValueProducer(const FactoryValueProducer&) = delete;
- FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
- };
- static ValueProducer* producer_;
- };
- // This partial specialization allows a user to set default values for
- // reference types.
- template <typename T>
- class DefaultValue<T&> {
- public:
- // Sets the default value for type T&.
- static void Set(T& x) { // NOLINT
- address_ = &x;
- }
- // Unsets the default value for type T&.
- static void Clear() { address_ = nullptr; }
- // Returns true if and only if the user has set the default value for type T&.
- static bool IsSet() { return address_ != nullptr; }
- // Returns true if T has a default return value set by the user or there
- // exists a built-in default value.
- static bool Exists() {
- return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
- }
- // Returns the default value for type T& if the user has set one;
- // otherwise returns the built-in default value if there is one;
- // otherwise aborts the process.
- static T& Get() {
- return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
- : *address_;
- }
- private:
- static T* address_;
- };
- // This specialization allows DefaultValue<void>::Get() to
- // compile.
- template <>
- class DefaultValue<void> {
- public:
- static bool Exists() { return true; }
- static void Get() {}
- };
- // Points to the user-set default value for type T.
- template <typename T>
- typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
- // Points to the user-set default value for type T&.
- template <typename T>
- T* DefaultValue<T&>::address_ = nullptr;
- // Implement this interface to define an action for function type F.
- template <typename F>
- class ActionInterface {
- public:
- typedef typename internal::Function<F>::Result Result;
- typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
- ActionInterface() {}
- virtual ~ActionInterface() {}
- // Performs the action. This method is not const, as in general an
- // action can have side effects and be stateful. For example, a
- // get-the-next-element-from-the-collection action will need to
- // remember the current element.
- virtual Result Perform(const ArgumentTuple& args) = 0;
- private:
- ActionInterface(const ActionInterface&) = delete;
- ActionInterface& operator=(const ActionInterface&) = delete;
- };
- template <typename F>
- class Action;
- // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
- // object that represents an action to be taken when a mock function of type
- // R(Args...) is called. The implementation of Action<T> is just a
- // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
- // can view an object implementing ActionInterface<F> as a concrete action
- // (including its current state), and an Action<F> object as a handle to it.
- template <typename R, typename... Args>
- class Action<R(Args...)> {
- private:
- using F = R(Args...);
- // Adapter class to allow constructing Action from a legacy ActionInterface.
- // New code should create Actions from functors instead.
- struct ActionAdapter {
- // Adapter must be copyable to satisfy std::function requirements.
- ::std::shared_ptr<ActionInterface<F>> impl_;
- template <typename... InArgs>
- typename internal::Function<F>::Result operator()(InArgs&&... args) {
- return impl_->Perform(
- ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
- }
- };
- template <typename G>
- using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
- public:
- typedef typename internal::Function<F>::Result Result;
- typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
- // Constructs a null Action. Needed for storing Action objects in
- // STL containers.
- Action() {}
- // Construct an Action from a specified callable.
- // This cannot take std::function directly, because then Action would not be
- // directly constructible from lambda (it would require two conversions).
- template <
- typename G,
- typename = typename std::enable_if<internal::disjunction<
- IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
- G>>::value>::type>
- Action(G&& fun) { // NOLINT
- Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
- }
- // Constructs an Action from its implementation.
- explicit Action(ActionInterface<F>* impl)
- : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
- // This constructor allows us to turn an Action<Func> object into an
- // Action<F>, as long as F's arguments can be implicitly converted
- // to Func's and Func's return type can be implicitly converted to F's.
- template <typename Func>
- Action(const Action<Func>& action) // NOLINT
- : fun_(action.fun_) {}
- // Returns true if and only if this is the DoDefault() action.
- bool IsDoDefault() const { return fun_ == nullptr; }
- // Performs the action. Note that this method is const even though
- // the corresponding method in ActionInterface is not. The reason
- // is that a const Action<F> means that it cannot be re-bound to
- // another concrete action, not that the concrete action it binds to
- // cannot change state. (Think of the difference between a const
- // pointer and a pointer to const.)
- Result Perform(ArgumentTuple args) const {
- if (IsDoDefault()) {
- internal::IllegalDoDefault(__FILE__, __LINE__);
- }
- return internal::Apply(fun_, ::std::move(args));
- }
- // An action can be used as a OnceAction, since it's obviously safe to call it
- // once.
- operator OnceAction<F>() const { // NOLINT
- // Return a OnceAction-compatible callable that calls Perform with the
- // arguments it is provided. We could instead just return fun_, but then
- // we'd need to handle the IsDoDefault() case separately.
- struct OA {
- Action<F> action;
- R operator()(Args... args) && {
- return action.Perform(
- std::forward_as_tuple(std::forward<Args>(args)...));
- }
- };
- return OA{*this};
- }
- private:
- template <typename G>
- friend class Action;
- template <typename G>
- void Init(G&& g, ::std::true_type) {
- fun_ = ::std::forward<G>(g);
- }
- template <typename G>
- void Init(G&& g, ::std::false_type) {
- fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
- }
- template <typename FunctionImpl>
- struct IgnoreArgs {
- template <typename... InArgs>
- Result operator()(const InArgs&...) const {
- return function_impl();
- }
- FunctionImpl function_impl;
- };
- // fun_ is an empty function if and only if this is the DoDefault() action.
- ::std::function<F> fun_;
- };
- // The PolymorphicAction class template makes it easy to implement a
- // polymorphic action (i.e. an action that can be used in mock
- // functions of than one type, e.g. Return()).
- //
- // To define a polymorphic action, a user first provides a COPYABLE
- // implementation class that has a Perform() method template:
- //
- // class FooAction {
- // public:
- // template <typename Result, typename ArgumentTuple>
- // Result Perform(const ArgumentTuple& args) const {
- // // Processes the arguments and returns a result, using
- // // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
- // }
- // ...
- // };
- //
- // Then the user creates the polymorphic action using
- // MakePolymorphicAction(object) where object has type FooAction. See
- // the definition of Return(void) and SetArgumentPointee<N>(value) for
- // complete examples.
- template <typename Impl>
- class PolymorphicAction {
- public:
- explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
- template <typename F>
- operator Action<F>() const {
- return Action<F>(new MonomorphicImpl<F>(impl_));
- }
- private:
- template <typename F>
- class MonomorphicImpl : public ActionInterface<F> {
- public:
- typedef typename internal::Function<F>::Result Result;
- typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
- explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
- Result Perform(const ArgumentTuple& args) override {
- return impl_.template Perform<Result>(args);
- }
- private:
- Impl impl_;
- };
- Impl impl_;
- };
- // Creates an Action from its implementation and returns it. The
- // created Action object owns the implementation.
- template <typename F>
- Action<F> MakeAction(ActionInterface<F>* impl) {
- return Action<F>(impl);
- }
- // Creates a polymorphic action from its implementation. This is
- // easier to use than the PolymorphicAction<Impl> constructor as it
- // doesn't require you to explicitly write the template argument, e.g.
- //
- // MakePolymorphicAction(foo);
- // vs
- // PolymorphicAction<TypeOfFoo>(foo);
- template <typename Impl>
- inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
- return PolymorphicAction<Impl>(impl);
- }
- namespace internal {
- // Helper struct to specialize ReturnAction to execute a move instead of a copy
- // on return. Useful for move-only types, but could be used on any type.
- template <typename T>
- struct ByMoveWrapper {
- explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
- T payload;
- };
- // The general implementation of Return(R). Specializations follow below.
- template <typename R>
- class ReturnAction final {
- public:
- explicit ReturnAction(R value) : value_(std::move(value)) {}
- template <typename U, typename... Args,
- typename = typename std::enable_if<conjunction<
- // See the requirements documented on Return.
- negation<std::is_same<void, U>>, //
- negation<std::is_reference<U>>, //
- std::is_convertible<R, U>, //
- std::is_move_constructible<U>>::value>::type>
- operator OnceAction<U(Args...)>() && { // NOLINT
- return Impl<U>(std::move(value_));
- }
- template <typename U, typename... Args,
- typename = typename std::enable_if<conjunction<
- // See the requirements documented on Return.
- negation<std::is_same<void, U>>, //
- negation<std::is_reference<U>>, //
- std::is_convertible<const R&, U>, //
- std::is_copy_constructible<U>>::value>::type>
- operator Action<U(Args...)>() const { // NOLINT
- return Impl<U>(value_);
- }
- private:
- // Implements the Return(x) action for a mock function that returns type U.
- template <typename U>
- class Impl final {
- public:
- // The constructor used when the return value is allowed to move from the
- // input value (i.e. we are converting to OnceAction).
- explicit Impl(R&& input_value)
- : state_(new State(std::move(input_value))) {}
- // The constructor used when the return value is not allowed to move from
- // the input value (i.e. we are converting to Action).
- explicit Impl(const R& input_value) : state_(new State(input_value)) {}
- U operator()() && { return std::move(state_->value); }
- U operator()() const& { return state_->value; }
- private:
- // We put our state on the heap so that the compiler-generated copy/move
- // constructors work correctly even when U is a reference-like type. This is
- // necessary only because we eagerly create State::value (see the note on
- // that symbol for details). If we instead had only the input value as a
- // member then the default constructors would work fine.
- //
- // For example, when R is std::string and U is std::string_view, value is a
- // reference to the string backed by input_value. The copy constructor would
- // copy both, so that we wind up with a new input_value object (with the
- // same contents) and a reference to the *old* input_value object rather
- // than the new one.
- struct State {
- explicit State(const R& input_value_in)
- : input_value(input_value_in),
- // Make an implicit conversion to Result before initializing the U
- // object we store, avoiding calling any explicit constructor of U
- // from R.
- //
- // This simulates the language rules: a function with return type U
- // that does `return R()` requires R to be implicitly convertible to
- // U, and uses that path for the conversion, even U Result has an
- // explicit constructor from R.
- value(ImplicitCast_<U>(internal::as_const(input_value))) {}
- // As above, but for the case where we're moving from the ReturnAction
- // object because it's being used as a OnceAction.
- explicit State(R&& input_value_in)
- : input_value(std::move(input_value_in)),
- // For the same reason as above we make an implicit conversion to U
- // before initializing the value.
- //
- // Unlike above we provide the input value as an rvalue to the
- // implicit conversion because this is a OnceAction: it's fine if it
- // wants to consume the input value.
- value(ImplicitCast_<U>(std::move(input_value))) {}
- // A copy of the value originally provided by the user. We retain this in
- // addition to the value of the mock function's result type below in case
- // the latter is a reference-like type. See the std::string_view example
- // in the documentation on Return.
- R input_value;
- // The value we actually return, as the type returned by the mock function
- // itself.
- //
- // We eagerly initialize this here, rather than lazily doing the implicit
- // conversion automatically each time Perform is called, for historical
- // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
- // made the Action<U()> conversion operator eagerly convert the R value to
- // U, but without keeping the R alive. This broke the use case discussed
- // in the documentation for Return, making reference-like types such as
- // std::string_view not safe to use as U where the input type R is a
- // value-like type such as std::string.
- //
- // The example the commit gave was not very clear, nor was the issue
- // thread (https://github.com/google/googlemock/issues/86), but it seems
- // the worry was about reference-like input types R that flatten to a
- // value-like type U when being implicitly converted. An example of this
- // is std::vector<bool>::reference, which is often a proxy type with an
- // reference to the underlying vector:
- //
- // // Helper method: have the mock function return bools according
- // // to the supplied script.
- // void SetActions(MockFunction<bool(size_t)>& mock,
- // const std::vector<bool>& script) {
- // for (size_t i = 0; i < script.size(); ++i) {
- // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
- // }
- // }
- //
- // TEST(Foo, Bar) {
- // // Set actions using a temporary vector, whose operator[]
- // // returns proxy objects that references that will be
- // // dangling once the call to SetActions finishes and the
- // // vector is destroyed.
- // MockFunction<bool(size_t)> mock;
- // SetActions(mock, {false, true});
- //
- // EXPECT_FALSE(mock.AsStdFunction()(0));
- // EXPECT_TRUE(mock.AsStdFunction()(1));
- // }
- //
- // This eager conversion helps with a simple case like this, but doesn't
- // fully make these types work in general. For example the following still
- // uses a dangling reference:
- //
- // TEST(Foo, Baz) {
- // MockFunction<std::vector<std::string>()> mock;
- //
- // // Return the same vector twice, and then the empty vector
- // // thereafter.
- // auto action = Return(std::initializer_list<std::string>{
- // "taco", "burrito",
- // });
- //
- // EXPECT_CALL(mock, Call)
- // .WillOnce(action)
- // .WillOnce(action)
- // .WillRepeatedly(Return(std::vector<std::string>{}));
- //
- // EXPECT_THAT(mock.AsStdFunction()(),
- // ElementsAre("taco", "burrito"));
- // EXPECT_THAT(mock.AsStdFunction()(),
- // ElementsAre("taco", "burrito"));
- // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
- // }
- //
- U value;
- };
- const std::shared_ptr<State> state_;
- };
- R value_;
- };
- // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
- //
- // This version applies the type system-defeating hack of moving from T even in
- // the const call operator, checking at runtime that it isn't called more than
- // once, since the user has declared their intent to do so by using ByMove.
- template <typename T>
- class ReturnAction<ByMoveWrapper<T>> final {
- public:
- explicit ReturnAction(ByMoveWrapper<T> wrapper)
- : state_(new State(std::move(wrapper.payload))) {}
- T operator()() const {
- GTEST_CHECK_(!state_->called)
- << "A ByMove() action must be performed at most once.";
- state_->called = true;
- return std::move(state_->value);
- }
- private:
- // We store our state on the heap so that we are copyable as required by
- // Action, despite the fact that we are stateful and T may not be copyable.
- struct State {
- explicit State(T&& value_in) : value(std::move(value_in)) {}
- T value;
- bool called = false;
- };
- const std::shared_ptr<State> state_;
- };
- // Implements the ReturnNull() action.
- class ReturnNullAction {
- public:
- // Allows ReturnNull() to be used in any pointer-returning function. In C++11
- // this is enforced by returning nullptr, and in non-C++11 by asserting a
- // pointer type on compile time.
- template <typename Result, typename ArgumentTuple>
- static Result Perform(const ArgumentTuple&) {
- return nullptr;
- }
- };
- // Implements the Return() action.
- class ReturnVoidAction {
- public:
- // Allows Return() to be used in any void-returning function.
- template <typename Result, typename ArgumentTuple>
- static void Perform(const ArgumentTuple&) {
- static_assert(std::is_void<Result>::value, "Result should be void.");
- }
- };
- // Implements the polymorphic ReturnRef(x) action, which can be used
- // in any function that returns a reference to the type of x,
- // regardless of the argument types.
- template <typename T>
- class ReturnRefAction {
- public:
- // Constructs a ReturnRefAction object from the reference to be returned.
- explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
- // This template type conversion operator allows ReturnRef(x) to be
- // used in ANY function that returns a reference to x's type.
- template <typename F>
- operator Action<F>() const {
- typedef typename Function<F>::Result Result;
- // Asserts that the function return type is a reference. This
- // catches the user error of using ReturnRef(x) when Return(x)
- // should be used, and generates some helpful error message.
- static_assert(std::is_reference<Result>::value,
- "use Return instead of ReturnRef to return a value");
- return Action<F>(new Impl<F>(ref_));
- }
- private:
- // Implements the ReturnRef(x) action for a particular function type F.
- template <typename F>
- class Impl : public ActionInterface<F> {
- public:
- typedef typename Function<F>::Result Result;
- typedef typename Function<F>::ArgumentTuple ArgumentTuple;
- explicit Impl(T& ref) : ref_(ref) {} // NOLINT
- Result Perform(const ArgumentTuple&) override { return ref_; }
- private:
- T& ref_;
- };
- T& ref_;
- };
- // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
- // used in any function that returns a reference to the type of x,
- // regardless of the argument types.
- template <typename T>
- class ReturnRefOfCopyAction {
- public:
- // Constructs a ReturnRefOfCopyAction object from the reference to
- // be returned.
- explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
- // This template type conversion operator allows ReturnRefOfCopy(x) to be
- // used in ANY function that returns a reference to x's type.
- template <typename F>
- operator Action<F>() const {
- typedef typename Function<F>::Result Result;
- // Asserts that the function return type is a reference. This
- // catches the user error of using ReturnRefOfCopy(x) when Return(x)
- // should be used, and generates some helpful error message.
- static_assert(std::is_reference<Result>::value,
- "use Return instead of ReturnRefOfCopy to return a value");
- return Action<F>(new Impl<F>(value_));
- }
- private:
- // Implements the ReturnRefOfCopy(x) action for a particular function type F.
- template <typename F>
- class Impl : public ActionInterface<F> {
- public:
- typedef typename Function<F>::Result Result;
- typedef typename Function<F>::ArgumentTuple ArgumentTuple;
- explicit Impl(const T& value) : value_(value) {} // NOLINT
- Result Perform(const ArgumentTuple&) override { return value_; }
- private:
- T value_;
- };
- const T value_;
- };
- // Implements the polymorphic ReturnRoundRobin(v) action, which can be
- // used in any function that returns the element_type of v.
- template <typename T>
- class ReturnRoundRobinAction {
- public:
- explicit ReturnRoundRobinAction(std::vector<T> values) {
- GTEST_CHECK_(!values.empty())
- << "ReturnRoundRobin requires at least one element.";
- state_->values = std::move(values);
- }
- template <typename... Args>
- T operator()(Args&&...) const {
- return state_->Next();
- }
- private:
- struct State {
- T Next() {
- T ret_val = values[i++];
- if (i == values.size()) i = 0;
- return ret_val;
- }
- std::vector<T> values;
- size_t i = 0;
- };
- std::shared_ptr<State> state_ = std::make_shared<State>();
- };
- // Implements the polymorphic DoDefault() action.
- class DoDefaultAction {
- public:
- // This template type conversion operator allows DoDefault() to be
- // used in any function.
- template <typename F>
- operator Action<F>() const {
- return Action<F>();
- } // NOLINT
- };
- // Implements the Assign action to set a given pointer referent to a
- // particular value.
- template <typename T1, typename T2>
- class AssignAction {
- public:
- AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
- template <typename Result, typename ArgumentTuple>
- void Perform(const ArgumentTuple& /* args */) const {
- *ptr_ = value_;
- }
- private:
- T1* const ptr_;
- const T2 value_;
- };
- #if !GTEST_OS_WINDOWS_MOBILE
- // Implements the SetErrnoAndReturn action to simulate return from
- // various system calls and libc functions.
- template <typename T>
- class SetErrnoAndReturnAction {
- public:
- SetErrnoAndReturnAction(int errno_value, T result)
- : errno_(errno_value), result_(result) {}
- template <typename Result, typename ArgumentTuple>
- Result Perform(const ArgumentTuple& /* args */) const {
- errno = errno_;
- return result_;
- }
- private:
- const int errno_;
- const T result_;
- };
- #endif // !GTEST_OS_WINDOWS_MOBILE
- // Implements the SetArgumentPointee<N>(x) action for any function
- // whose N-th argument (0-based) is a pointer to x's type.
- template <size_t N, typename A, typename = void>
- struct SetArgumentPointeeAction {
- A value;
- template <typename... Args>
- void operator()(const Args&... args) const {
- *::std::get<N>(std::tie(args...)) = value;
- }
- };
- // Implements the Invoke(object_ptr, &Class::Method) action.
- template <class Class, typename MethodPtr>
- struct InvokeMethodAction {
- Class* const obj_ptr;
- const MethodPtr method_ptr;
- template <typename... Args>
- auto operator()(Args&&... args) const
- -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
- return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
- }
- };
- // Implements the InvokeWithoutArgs(f) action. The template argument
- // FunctionImpl is the implementation type of f, which can be either a
- // function pointer or a functor. InvokeWithoutArgs(f) can be used as an
- // Action<F> as long as f's type is compatible with F.
- template <typename FunctionImpl>
- struct InvokeWithoutArgsAction {
- FunctionImpl function_impl;
- // Allows InvokeWithoutArgs(f) to be used as any action whose type is
- // compatible with f.
- template <typename... Args>
- auto operator()(const Args&...) -> decltype(function_impl()) {
- return function_impl();
- }
- };
- // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
- template <class Class, typename MethodPtr>
- struct InvokeMethodWithoutArgsAction {
- Class* const obj_ptr;
- const MethodPtr method_ptr;
- using ReturnType =
- decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
- template <typename... Args>
- ReturnType operator()(const Args&...) const {
- return (obj_ptr->*method_ptr)();
- }
- };
- // Implements the IgnoreResult(action) action.
- template <typename A>
- class IgnoreResultAction {
- public:
- explicit IgnoreResultAction(const A& action) : action_(action) {}
- template <typename F>
- operator Action<F>() const {
- // Assert statement belongs here because this is the best place to verify
- // conditions on F. It produces the clearest error messages
- // in most compilers.
- // Impl really belongs in this scope as a local class but can't
- // because MSVC produces duplicate symbols in different translation units
- // in this case. Until MS fixes that bug we put Impl into the class scope
- // and put the typedef both here (for use in assert statement) and
- // in the Impl class. But both definitions must be the same.
- typedef typename internal::Function<F>::Result Result;
- // Asserts at compile time that F returns void.
- static_assert(std::is_void<Result>::value, "Result type should be void.");
- return Action<F>(new Impl<F>(action_));
- }
- private:
- template <typename F>
- class Impl : public ActionInterface<F> {
- public:
- typedef typename internal::Function<F>::Result Result;
- typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
- explicit Impl(const A& action) : action_(action) {}
- void Perform(const ArgumentTuple& args) override {
- // Performs the action and ignores its result.
- action_.Perform(args);
- }
- private:
- // Type OriginalFunction is the same as F except that its return
- // type is IgnoredValue.
- typedef
- typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
- const Action<OriginalFunction> action_;
- };
- const A action_;
- };
- template <typename InnerAction, size_t... I>
- struct WithArgsAction {
- InnerAction inner_action;
- // The signature of the function as seen by the inner action, given an out
- // action with the given result and argument types.
- template <typename R, typename... Args>
- using InnerSignature =
- R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
- // Rather than a call operator, we must define conversion operators to
- // particular action types. This is necessary for embedded actions like
- // DoDefault(), which rely on an action conversion operators rather than
- // providing a call operator because even with a particular set of arguments
- // they don't have a fixed return type.
- template <typename R, typename... Args,
- typename std::enable_if<
- std::is_convertible<
- InnerAction,
- // Unfortunately we can't use the InnerSignature alias here;
- // MSVC complains about the I parameter pack not being
- // expanded (error C3520) despite it being expanded in the
- // type alias.
- // TupleElement is also an MSVC workaround.
- // See its definition for details.
- OnceAction<R(internal::TupleElement<
- I, std::tuple<Args...>>...)>>::value,
- int>::type = 0>
- operator OnceAction<R(Args...)>() && { // NOLINT
- struct OA {
- OnceAction<InnerSignature<R, Args...>> inner_action;
- R operator()(Args&&... args) && {
- return std::move(inner_action)
- .Call(std::get<I>(
- std::forward_as_tuple(std::forward<Args>(args)...))...);
- }
- };
- return OA{std::move(inner_action)};
- }
- template <typename R, typename... Args,
- typename std::enable_if<
- std::is_convertible<
- const InnerAction&,
- // Unfortunately we can't use the InnerSignature alias here;
- // MSVC complains about the I parameter pack not being
- // expanded (error C3520) despite it being expanded in the
- // type alias.
- // TupleElement is also an MSVC workaround.
- // See its definition for details.
- Action<R(internal::TupleElement<
- I, std::tuple<Args...>>...)>>::value,
- int>::type = 0>
- operator Action<R(Args...)>() const { // NOLINT
- Action<InnerSignature<R, Args...>> converted(inner_action);
- return [converted](Args&&... args) -> R {
- return converted.Perform(std::forward_as_tuple(
- std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
- };
- }
- };
- template <typename... Actions>
- class DoAllAction;
- // Base case: only a single action.
- template <typename FinalAction>
- class DoAllAction<FinalAction> {
- public:
- struct UserConstructorTag {};
- template <typename T>
- explicit DoAllAction(UserConstructorTag, T&& action)
- : final_action_(std::forward<T>(action)) {}
- // Rather than a call operator, we must define conversion operators to
- // particular action types. This is necessary for embedded actions like
- // DoDefault(), which rely on an action conversion operators rather than
- // providing a call operator because even with a particular set of arguments
- // they don't have a fixed return type.
- template <typename R, typename... Args,
- typename std::enable_if<
- std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
- int>::type = 0>
- operator OnceAction<R(Args...)>() && { // NOLINT
- return std::move(final_action_);
- }
- template <
- typename R, typename... Args,
- typename std::enable_if<
- std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
- int>::type = 0>
- operator Action<R(Args...)>() const { // NOLINT
- return final_action_;
- }
- private:
- FinalAction final_action_;
- };
- // Recursive case: support N actions by calling the initial action and then
- // calling through to the base class containing N-1 actions.
- template <typename InitialAction, typename... OtherActions>
- class DoAllAction<InitialAction, OtherActions...>
- : private DoAllAction<OtherActions...> {
- private:
- using Base = DoAllAction<OtherActions...>;
- // The type of reference that should be provided to an initial action for a
- // mocked function parameter of type T.
- //
- // There are two quirks here:
- //
- // * Unlike most forwarding functions, we pass scalars through by value.
- // This isn't strictly necessary because an lvalue reference would work
- // fine too and be consistent with other non-reference types, but it's
- // perhaps less surprising.
- //
- // For example if the mocked function has signature void(int), then it
- // might seem surprising for the user's initial action to need to be
- // convertible to Action<void(const int&)>. This is perhaps less
- // surprising for a non-scalar type where there may be a performance
- // impact, or it might even be impossible, to pass by value.
- //
- // * More surprisingly, `const T&` is often not a const reference type.
- // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
- // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
- // U&. In other words, we may hand over a non-const reference.
- //
- // So for example, given some non-scalar type Obj we have the following
- // mappings:
- //
- // T InitialActionArgType<T>
- // ------- -----------------------
- // Obj const Obj&
- // Obj& Obj&
- // Obj&& Obj&
- // const Obj const Obj&
- // const Obj& const Obj&
- // const Obj&& const Obj&
- //
- // In other words, the initial actions get a mutable view of an non-scalar
- // argument if and only if the mock function itself accepts a non-const
- // reference type. They are never given an rvalue reference to an
- // non-scalar type.
- //
- // This situation makes sense if you imagine use with a matcher that is
- // designed to write through a reference. For example, if the caller wants
- // to fill in a reference argument and then return a canned value:
- //
- // EXPECT_CALL(mock, Call)
- // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
- //
- template <typename T>
- using InitialActionArgType =
- typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
- public:
- struct UserConstructorTag {};
- template <typename T, typename... U>
- explicit DoAllAction(UserConstructorTag, T&& initial_action,
- U&&... other_actions)
- : Base({}, std::forward<U>(other_actions)...),
- initial_action_(std::forward<T>(initial_action)) {}
- template <typename R, typename... Args,
- typename std::enable_if<
- conjunction<
- // Both the initial action and the rest must support
- // conversion to OnceAction.
- std::is_convertible<
- InitialAction,
- OnceAction<void(InitialActionArgType<Args>...)>>,
- std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
- int>::type = 0>
- operator OnceAction<R(Args...)>() && { // NOLINT
- // Return an action that first calls the initial action with arguments
- // filtered through InitialActionArgType, then forwards arguments directly
- // to the base class to deal with the remaining actions.
- struct OA {
- OnceAction<void(InitialActionArgType<Args>...)> initial_action;
- OnceAction<R(Args...)> remaining_actions;
- R operator()(Args... args) && {
- std::move(initial_action)
- .Call(static_cast<InitialActionArgType<Args>>(args)...);
- return std::move(remaining_actions).Call(std::forward<Args>(args)...);
- }
- };
- return OA{
- std::move(initial_action_),
- std::move(static_cast<Base&>(*this)),
- };
- }
- template <
- typename R, typename... Args,
- typename std::enable_if<
- conjunction<
- // Both the initial action and the rest must support conversion to
- // Action.
- std::is_convertible<const InitialAction&,
- Action<void(InitialActionArgType<Args>...)>>,
- std::is_convertible<const Base&, Action<R(Args...)>>>::value,
- int>::type = 0>
- operator Action<R(Args...)>() const { // NOLINT
- // Return an action that first calls the initial action with arguments
- // filtered through InitialActionArgType, then forwards arguments directly
- // to the base class to deal with the remaining actions.
- struct OA {
- Action<void(InitialActionArgType<Args>...)> initial_action;
- Action<R(Args...)> remaining_actions;
- R operator()(Args... args) const {
- initial_action.Perform(std::forward_as_tuple(
- static_cast<InitialActionArgType<Args>>(args)...));
- return remaining_actions.Perform(
- std::forward_as_tuple(std::forward<Args>(args)...));
- }
- };
- return OA{
- initial_action_,
- static_cast<const Base&>(*this),
- };
- }
- private:
- InitialAction initial_action_;
- };
- template <typename T, typename... Params>
- struct ReturnNewAction {
- T* operator()() const {
- return internal::Apply(
- [](const Params&... unpacked_params) {
- return new T(unpacked_params...);
- },
- params);
- }
- std::tuple<Params...> params;
- };
- template <size_t k>
- struct ReturnArgAction {
- template <typename... Args,
- typename = typename std::enable_if<(k < sizeof...(Args))>::type>
- auto operator()(Args&&... args) const -> decltype(std::get<k>(
- std::forward_as_tuple(std::forward<Args>(args)...))) {
- return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
- }
- };
- template <size_t k, typename Ptr>
- struct SaveArgAction {
- Ptr pointer;
- template <typename... Args>
- void operator()(const Args&... args) const {
- *pointer = std::get<k>(std::tie(args...));
- }
- };
- template <size_t k, typename Ptr>
- struct SaveArgPointeeAction {
- Ptr pointer;
- template <typename... Args>
- void operator()(const Args&... args) const {
- *pointer = *std::get<k>(std::tie(args...));
- }
- };
- template <size_t k, typename T>
- struct SetArgRefereeAction {
- T value;
- template <typename... Args>
- void operator()(Args&&... args) const {
- using argk_type =
- typename ::std::tuple_element<k, std::tuple<Args...>>::type;
- static_assert(std::is_lvalue_reference<argk_type>::value,
- "Argument must be a reference type.");
- std::get<k>(std::tie(args...)) = value;
- }
- };
- template <size_t k, typename I1, typename I2>
- struct SetArrayArgumentAction {
- I1 first;
- I2 last;
- template <typename... Args>
- void operator()(const Args&... args) const {
- auto value = std::get<k>(std::tie(args...));
- for (auto it = first; it != last; ++it, (void)++value) {
- *value = *it;
- }
- }
- };
- template <size_t k>
- struct DeleteArgAction {
- template <typename... Args>
- void operator()(const Args&... args) const {
- delete std::get<k>(std::tie(args...));
- }
- };
- template <typename Ptr>
- struct ReturnPointeeAction {
- Ptr pointer;
- template <typename... Args>
- auto operator()(const Args&...) const -> decltype(*pointer) {
- return *pointer;
- }
- };
- #if GTEST_HAS_EXCEPTIONS
- template <typename T>
- struct ThrowAction {
- T exception;
- // We use a conversion operator to adapt to any return type.
- template <typename R, typename... Args>
- operator Action<R(Args...)>() const { // NOLINT
- T copy = exception;
- return [copy](Args...) -> R { throw copy; };
- }
- };
- #endif // GTEST_HAS_EXCEPTIONS
- } // namespace internal
- // An Unused object can be implicitly constructed from ANY value.
- // This is handy when defining actions that ignore some or all of the
- // mock function arguments. For example, given
- //
- // MOCK_METHOD3(Foo, double(const string& label, double x, double y));
- // MOCK_METHOD3(Bar, double(int index, double x, double y));
- //
- // instead of
- //
- // double DistanceToOriginWithLabel(const string& label, double x, double y) {
- // return sqrt(x*x + y*y);
- // }
- // double DistanceToOriginWithIndex(int index, double x, double y) {
- // return sqrt(x*x + y*y);
- // }
- // ...
- // EXPECT_CALL(mock, Foo("abc", _, _))
- // .WillOnce(Invoke(DistanceToOriginWithLabel));
- // EXPECT_CALL(mock, Bar(5, _, _))
- // .WillOnce(Invoke(DistanceToOriginWithIndex));
- //
- // you could write
- //
- // // We can declare any uninteresting argument as Unused.
- // double DistanceToOrigin(Unused, double x, double y) {
- // return sqrt(x*x + y*y);
- // }
- // ...
- // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
- // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
- typedef internal::IgnoredValue Unused;
- // Creates an action that does actions a1, a2, ..., sequentially in
- // each invocation. All but the last action will have a readonly view of the
- // arguments.
- template <typename... Action>
- internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
- Action&&... action) {
- return internal::DoAllAction<typename std::decay<Action>::type...>(
- {}, std::forward<Action>(action)...);
- }
- // WithArg<k>(an_action) creates an action that passes the k-th
- // (0-based) argument of the mock function to an_action and performs
- // it. It adapts an action accepting one argument to one that accepts
- // multiple arguments. For convenience, we also provide
- // WithArgs<k>(an_action) (defined below) as a synonym.
- template <size_t k, typename InnerAction>
- internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
- InnerAction&& action) {
- return {std::forward<InnerAction>(action)};
- }
- // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
- // the selected arguments of the mock function to an_action and
- // performs it. It serves as an adaptor between actions with
- // different argument lists.
- template <size_t k, size_t... ks, typename InnerAction>
- internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
- WithArgs(InnerAction&& action) {
- return {std::forward<InnerAction>(action)};
- }
- // WithoutArgs(inner_action) can be used in a mock function with a
- // non-empty argument list to perform inner_action, which takes no
- // argument. In other words, it adapts an action accepting no
- // argument to one that accepts (and ignores) arguments.
- template <typename InnerAction>
- internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
- InnerAction&& action) {
- return {std::forward<InnerAction>(action)};
- }
- // Creates an action that returns a value.
- //
- // The returned type can be used with a mock function returning a non-void,
- // non-reference type U as follows:
- //
- // * If R is convertible to U and U is move-constructible, then the action can
- // be used with WillOnce.
- //
- // * If const R& is convertible to U and U is copy-constructible, then the
- // action can be used with both WillOnce and WillRepeatedly.
- //
- // The mock expectation contains the R value from which the U return value is
- // constructed (a move/copy of the argument to Return). This means that the R
- // value will survive at least until the mock object's expectations are cleared
- // or the mock object is destroyed, meaning that U can safely be a
- // reference-like type such as std::string_view:
- //
- // // The mock function returns a view of a copy of the string fed to
- // // Return. The view is valid even after the action is performed.
- // MockFunction<std::string_view()> mock;
- // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
- // const std::string_view result = mock.AsStdFunction()();
- // EXPECT_EQ("taco", result);
- //
- template <typename R>
- internal::ReturnAction<R> Return(R value) {
- return internal::ReturnAction<R>(std::move(value));
- }
- // Creates an action that returns NULL.
- inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
- return MakePolymorphicAction(internal::ReturnNullAction());
- }
- // Creates an action that returns from a void function.
- inline PolymorphicAction<internal::ReturnVoidAction> Return() {
- return MakePolymorphicAction(internal::ReturnVoidAction());
- }
- // Creates an action that returns the reference to a variable.
- template <typename R>
- inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
- return internal::ReturnRefAction<R>(x);
- }
- // Prevent using ReturnRef on reference to temporary.
- template <typename R, R* = nullptr>
- internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
- // Creates an action that returns the reference to a copy of the
- // argument. The copy is created when the action is constructed and
- // lives as long as the action.
- template <typename R>
- inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
- return internal::ReturnRefOfCopyAction<R>(x);
- }
- // DEPRECATED: use Return(x) directly with WillOnce.
- //
- // Modifies the parent action (a Return() action) to perform a move of the
- // argument instead of a copy.
- // Return(ByMove()) actions can only be executed once and will assert this
- // invariant.
- template <typename R>
- internal::ByMoveWrapper<R> ByMove(R x) {
- return internal::ByMoveWrapper<R>(std::move(x));
- }
- // Creates an action that returns an element of `vals`. Calling this action will
- // repeatedly return the next value from `vals` until it reaches the end and
- // will restart from the beginning.
- template <typename T>
- internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
- return internal::ReturnRoundRobinAction<T>(std::move(vals));
- }
- // Creates an action that returns an element of `vals`. Calling this action will
- // repeatedly return the next value from `vals` until it reaches the end and
- // will restart from the beginning.
- template <typename T>
- internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
- std::initializer_list<T> vals) {
- return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
- }
- // Creates an action that does the default action for the give mock function.
- inline internal::DoDefaultAction DoDefault() {
- return internal::DoDefaultAction();
- }
- // Creates an action that sets the variable pointed by the N-th
- // (0-based) function argument to 'value'.
- template <size_t N, typename T>
- internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
- return {std::move(value)};
- }
- // The following version is DEPRECATED.
- template <size_t N, typename T>
- internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
- return {std::move(value)};
- }
- // Creates an action that sets a pointer referent to a given value.
- template <typename T1, typename T2>
- PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
- return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
- }
- #if !GTEST_OS_WINDOWS_MOBILE
- // Creates an action that sets errno and returns the appropriate error.
- template <typename T>
- PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
- int errval, T result) {
- return MakePolymorphicAction(
- internal::SetErrnoAndReturnAction<T>(errval, result));
- }
- #endif // !GTEST_OS_WINDOWS_MOBILE
- // Various overloads for Invoke().
- // Legacy function.
- // Actions can now be implicitly constructed from callables. No need to create
- // wrapper objects.
- // This function exists for backwards compatibility.
- template <typename FunctionImpl>
- typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
- return std::forward<FunctionImpl>(function_impl);
- }
- // Creates an action that invokes the given method on the given object
- // with the mock function's arguments.
- template <class Class, typename MethodPtr>
- internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
- MethodPtr method_ptr) {
- return {obj_ptr, method_ptr};
- }
- // Creates an action that invokes 'function_impl' with no argument.
- template <typename FunctionImpl>
- internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
- InvokeWithoutArgs(FunctionImpl function_impl) {
- return {std::move(function_impl)};
- }
- // Creates an action that invokes the given method on the given object
- // with no argument.
- template <class Class, typename MethodPtr>
- internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
- Class* obj_ptr, MethodPtr method_ptr) {
- return {obj_ptr, method_ptr};
- }
- // Creates an action that performs an_action and throws away its
- // result. In other words, it changes the return type of an_action to
- // void. an_action MUST NOT return void, or the code won't compile.
- template <typename A>
- inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
- return internal::IgnoreResultAction<A>(an_action);
- }
- // Creates a reference wrapper for the given L-value. If necessary,
- // you can explicitly specify the type of the reference. For example,
- // suppose 'derived' is an object of type Derived, ByRef(derived)
- // would wrap a Derived&. If you want to wrap a const Base& instead,
- // where Base is a base class of Derived, just write:
- //
- // ByRef<const Base>(derived)
- //
- // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
- // However, it may still be used for consistency with ByMove().
- template <typename T>
- inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
- return ::std::reference_wrapper<T>(l_value);
- }
- // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
- // instance of type T, constructed on the heap with constructor arguments
- // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
- template <typename T, typename... Params>
- internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
- Params&&... params) {
- return {std::forward_as_tuple(std::forward<Params>(params)...)};
- }
- // Action ReturnArg<k>() returns the k-th argument of the mock function.
- template <size_t k>
- internal::ReturnArgAction<k> ReturnArg() {
- return {};
- }
- // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
- // mock function to *pointer.
- template <size_t k, typename Ptr>
- internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
- return {pointer};
- }
- // Action SaveArgPointee<k>(pointer) saves the value pointed to
- // by the k-th (0-based) argument of the mock function to *pointer.
- template <size_t k, typename Ptr>
- internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
- return {pointer};
- }
- // Action SetArgReferee<k>(value) assigns 'value' to the variable
- // referenced by the k-th (0-based) argument of the mock function.
- template <size_t k, typename T>
- internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
- T&& value) {
- return {std::forward<T>(value)};
- }
- // Action SetArrayArgument<k>(first, last) copies the elements in
- // source range [first, last) to the array pointed to by the k-th
- // (0-based) argument, which can be either a pointer or an
- // iterator. The action does not take ownership of the elements in the
- // source range.
- template <size_t k, typename I1, typename I2>
- internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
- I2 last) {
- return {first, last};
- }
- // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
- // function.
- template <size_t k>
- internal::DeleteArgAction<k> DeleteArg() {
- return {};
- }
- // This action returns the value pointed to by 'pointer'.
- template <typename Ptr>
- internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
- return {pointer};
- }
- // Action Throw(exception) can be used in a mock function of any type
- // to throw the given exception. Any copyable value can be thrown.
- #if GTEST_HAS_EXCEPTIONS
- template <typename T>
- internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
- return {std::forward<T>(exception)};
- }
- #endif // GTEST_HAS_EXCEPTIONS
- namespace internal {
- // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
- // defines an action that can be used in a mock function. Typically,
- // these actions only care about a subset of the arguments of the mock
- // function. For example, if such an action only uses the second
- // argument, it can be used in any mock function that takes >= 2
- // arguments where the type of the second argument is compatible.
- //
- // Therefore, the action implementation must be prepared to take more
- // arguments than it needs. The ExcessiveArg type is used to
- // represent those excessive arguments. In order to keep the compiler
- // error messages tractable, we define it in the testing namespace
- // instead of testing::internal. However, this is an INTERNAL TYPE
- // and subject to change without notice, so a user MUST NOT USE THIS
- // TYPE DIRECTLY.
- struct ExcessiveArg {};
- // Builds an implementation of an Action<> for some particular signature, using
- // a class defined by an ACTION* macro.
- template <typename F, typename Impl>
- struct ActionImpl;
- template <typename Impl>
- struct ImplBase {
- struct Holder {
- // Allows each copy of the Action<> to get to the Impl.
- explicit operator const Impl&() const { return *ptr; }
- std::shared_ptr<Impl> ptr;
- };
- using type = typename std::conditional<std::is_constructible<Impl>::value,
- Impl, Holder>::type;
- };
- template <typename R, typename... Args, typename Impl>
- struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
- using Base = typename ImplBase<Impl>::type;
- using function_type = R(Args...);
- using args_type = std::tuple<Args...>;
- ActionImpl() = default; // Only defined if appropriate for Base.
- explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
- R operator()(Args&&... arg) const {
- static constexpr size_t kMaxArgs =
- sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
- return Apply(MakeIndexSequence<kMaxArgs>{},
- MakeIndexSequence<10 - kMaxArgs>{},
- args_type{std::forward<Args>(arg)...});
- }
- template <std::size_t... arg_id, std::size_t... excess_id>
- R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
- const args_type& args) const {
- // Impl need not be specific to the signature of action being implemented;
- // only the implementing function body needs to have all of the specific
- // types instantiated. Up to 10 of the args that are provided by the
- // args_type get passed, followed by a dummy of unspecified type for the
- // remainder up to 10 explicit args.
- static constexpr ExcessiveArg kExcessArg{};
- return static_cast<const Impl&>(*this)
- .template gmock_PerformImpl<
- /*function_type=*/function_type, /*return_type=*/R,
- /*args_type=*/args_type,
- /*argN_type=*/
- typename std::tuple_element<arg_id, args_type>::type...>(
- /*args=*/args, std::get<arg_id>(args)...,
- ((void)excess_id, kExcessArg)...);
- }
- };
- // Stores a default-constructed Impl as part of the Action<>'s
- // std::function<>. The Impl should be trivial to copy.
- template <typename F, typename Impl>
- ::testing::Action<F> MakeAction() {
- return ::testing::Action<F>(ActionImpl<F, Impl>());
- }
- // Stores just the one given instance of Impl.
- template <typename F, typename Impl>
- ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
- return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
- }
- #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
- , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
- #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
- const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
- GMOCK_INTERNAL_ARG_UNUSED, , 10)
- #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
- #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
- const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
- #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
- #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
- GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
- #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
- #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
- GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
- #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
- #define GMOCK_ACTION_TYPE_PARAMS_(params) \
- GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
- #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
- , param##_type gmock_p##i
- #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
- GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
- #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
- , std::forward<param##_type>(gmock_p##i)
- #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
- GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
- #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
- , param(::std::forward<param##_type>(gmock_p##i))
- #define GMOCK_ACTION_INIT_PARAMS_(params) \
- GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
- #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
- #define GMOCK_ACTION_FIELD_PARAMS_(params) \
- GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
- #define GMOCK_INTERNAL_ACTION(name, full_name, params) \
- template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
- class full_name { \
- public: \
- explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
- : impl_(std::make_shared<gmock_Impl>( \
- GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \
- full_name(const full_name&) = default; \
- full_name(full_name&&) noexcept = default; \
- template <typename F> \
- operator ::testing::Action<F>() const { \
- return ::testing::internal::MakeAction<F>(impl_); \
- } \
- \
- private: \
- class gmock_Impl { \
- public: \
- explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
- : GMOCK_ACTION_INIT_PARAMS_(params) {} \
- template <typename function_type, typename return_type, \
- typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
- return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
- GMOCK_ACTION_FIELD_PARAMS_(params) \
- }; \
- std::shared_ptr<const gmock_Impl> impl_; \
- }; \
- template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
- inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
- GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \
- template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
- inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
- GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
- return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
- GMOCK_ACTION_GVALUE_PARAMS_(params)); \
- } \
- template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
- template <typename function_type, typename return_type, typename args_type, \
- GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
- return_type \
- full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
- GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
- } // namespace internal
- // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
- #define ACTION(name) \
- class name##Action { \
- public: \
- explicit name##Action() noexcept {} \
- name##Action(const name##Action&) noexcept {} \
- template <typename F> \
- operator ::testing::Action<F>() const { \
- return ::testing::internal::MakeAction<F, gmock_Impl>(); \
- } \
- \
- private: \
- class gmock_Impl { \
- public: \
- template <typename function_type, typename return_type, \
- typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
- return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
- }; \
- }; \
- inline name##Action name() GTEST_MUST_USE_RESULT_; \
- inline name##Action name() { return name##Action(); } \
- template <typename function_type, typename return_type, typename args_type, \
- GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
- return_type name##Action::gmock_Impl::gmock_PerformImpl( \
- GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
- #define ACTION_P(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
- #define ACTION_P2(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
- #define ACTION_P3(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
- #define ACTION_P4(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
- #define ACTION_P5(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
- #define ACTION_P6(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
- #define ACTION_P7(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
- #define ACTION_P8(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
- #define ACTION_P9(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
- #define ACTION_P10(name, ...) \
- GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
- } // namespace testing
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
- #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|