123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- // Copyright 2008 Google Inc.
- // All Rights Reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- // This provides interface PrimeTable that determines whether a number is a
- // prime and determines a next prime number. This interface is used
- // in Google Test samples demonstrating use of parameterized tests.
- #ifndef GOOGLETEST_SAMPLES_PRIME_TABLES_H_
- #define GOOGLETEST_SAMPLES_PRIME_TABLES_H_
- #include <algorithm>
- // The prime table interface.
- class PrimeTable {
- public:
- virtual ~PrimeTable() {}
- // Returns true if and only if n is a prime number.
- virtual bool IsPrime(int n) const = 0;
- // Returns the smallest prime number greater than p; or returns -1
- // if the next prime is beyond the capacity of the table.
- virtual int GetNextPrime(int p) const = 0;
- };
- // Implementation #1 calculates the primes on-the-fly.
- class OnTheFlyPrimeTable : public PrimeTable {
- public:
- bool IsPrime(int n) const override {
- if (n <= 1) return false;
- for (int i = 2; i * i <= n; i++) {
- // n is divisible by an integer other than 1 and itself.
- if ((n % i) == 0) return false;
- }
- return true;
- }
- int GetNextPrime(int p) const override {
- if (p < 0) return -1;
- for (int n = p + 1;; n++) {
- if (IsPrime(n)) return n;
- }
- }
- };
- // Implementation #2 pre-calculates the primes and stores the result
- // in an array.
- class PreCalculatedPrimeTable : public PrimeTable {
- public:
- // 'max' specifies the maximum number the prime table holds.
- explicit PreCalculatedPrimeTable(int max)
- : is_prime_size_(max + 1), is_prime_(new bool[max + 1]) {
- CalculatePrimesUpTo(max);
- }
- ~PreCalculatedPrimeTable() override { delete[] is_prime_; }
- bool IsPrime(int n) const override {
- return 0 <= n && n < is_prime_size_ && is_prime_[n];
- }
- int GetNextPrime(int p) const override {
- for (int n = p + 1; n < is_prime_size_; n++) {
- if (is_prime_[n]) return n;
- }
- return -1;
- }
- private:
- void CalculatePrimesUpTo(int max) {
- ::std::fill(is_prime_, is_prime_ + is_prime_size_, true);
- is_prime_[0] = is_prime_[1] = false;
- // Checks every candidate for prime number (we know that 2 is the only even
- // prime).
- for (int i = 2; i * i <= max; i += i % 2 + 1) {
- if (!is_prime_[i]) continue;
- // Marks all multiples of i (except i itself) as non-prime.
- // We are starting here from i-th multiplier, because all smaller
- // complex numbers were already marked.
- for (int j = i * i; j <= max; j += i) {
- is_prime_[j] = false;
- }
- }
- }
- const int is_prime_size_;
- bool* const is_prime_;
- // Disables compiler warning "assignment operator could not be generated."
- void operator=(const PreCalculatedPrimeTable& rhs);
- };
- #endif // GOOGLETEST_SAMPLES_PRIME_TABLES_H_
|