123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572 |
- // Copyright 2007, Google Inc.
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- // Google Mock - a framework for writing C++ mock classes.
- //
- // This file implements Matcher<const string&>, Matcher<string>, and
- // utilities for defining matchers.
- #include "gmock/gmock-matchers.h"
- #include "gmock/gmock-generated-matchers.h"
- #include <string.h>
- #include <iostream>
- #include <sstream>
- #include <string>
- namespace testing {
- // Constructs a matcher that matches a const std::string& whose value is
- // equal to s.
- Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); }
- #if GTEST_HAS_GLOBAL_STRING
- // Constructs a matcher that matches a const std::string& whose value is
- // equal to s.
- Matcher<const std::string&>::Matcher(const ::string& s) {
- *this = Eq(static_cast<std::string>(s));
- }
- #endif // GTEST_HAS_GLOBAL_STRING
- // Constructs a matcher that matches a const std::string& whose value is
- // equal to s.
- Matcher<const std::string&>::Matcher(const char* s) {
- *this = Eq(std::string(s));
- }
- // Constructs a matcher that matches a std::string whose value is equal to
- // s.
- Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); }
- #if GTEST_HAS_GLOBAL_STRING
- // Constructs a matcher that matches a std::string whose value is equal to
- // s.
- Matcher<std::string>::Matcher(const ::string& s) {
- *this = Eq(static_cast<std::string>(s));
- }
- #endif // GTEST_HAS_GLOBAL_STRING
- // Constructs a matcher that matches a std::string whose value is equal to
- // s.
- Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); }
- #if GTEST_HAS_GLOBAL_STRING
- // Constructs a matcher that matches a const ::string& whose value is
- // equal to s.
- Matcher<const ::string&>::Matcher(const std::string& s) {
- *this = Eq(static_cast<::string>(s));
- }
- // Constructs a matcher that matches a const ::string& whose value is
- // equal to s.
- Matcher<const ::string&>::Matcher(const ::string& s) { *this = Eq(s); }
- // Constructs a matcher that matches a const ::string& whose value is
- // equal to s.
- Matcher<const ::string&>::Matcher(const char* s) { *this = Eq(::string(s)); }
- // Constructs a matcher that matches a ::string whose value is equal to s.
- Matcher<::string>::Matcher(const std::string& s) {
- *this = Eq(static_cast<::string>(s));
- }
- // Constructs a matcher that matches a ::string whose value is equal to s.
- Matcher<::string>::Matcher(const ::string& s) { *this = Eq(s); }
- // Constructs a matcher that matches a string whose value is equal to s.
- Matcher<::string>::Matcher(const char* s) { *this = Eq(::string(s)); }
- #endif // GTEST_HAS_GLOBAL_STRING
- #if GTEST_HAS_ABSL
- // Constructs a matcher that matches a const absl::string_view& whose value is
- // equal to s.
- Matcher<const absl::string_view&>::Matcher(const std::string& s) {
- *this = Eq(s);
- }
- #if GTEST_HAS_GLOBAL_STRING
- // Constructs a matcher that matches a const absl::string_view& whose value is
- // equal to s.
- Matcher<const absl::string_view&>::Matcher(const ::string& s) { *this = Eq(s); }
- #endif // GTEST_HAS_GLOBAL_STRING
- // Constructs a matcher that matches a const absl::string_view& whose value is
- // equal to s.
- Matcher<const absl::string_view&>::Matcher(const char* s) {
- *this = Eq(std::string(s));
- }
- // Constructs a matcher that matches a const absl::string_view& whose value is
- // equal to s.
- Matcher<const absl::string_view&>::Matcher(absl::string_view s) {
- *this = Eq(std::string(s));
- }
- // Constructs a matcher that matches a absl::string_view whose value is equal to
- // s.
- Matcher<absl::string_view>::Matcher(const std::string& s) { *this = Eq(s); }
- #if GTEST_HAS_GLOBAL_STRING
- // Constructs a matcher that matches a absl::string_view whose value is equal to
- // s.
- Matcher<absl::string_view>::Matcher(const ::string& s) { *this = Eq(s); }
- #endif // GTEST_HAS_GLOBAL_STRING
- // Constructs a matcher that matches a absl::string_view whose value is equal to
- // s.
- Matcher<absl::string_view>::Matcher(const char* s) {
- *this = Eq(std::string(s));
- }
- // Constructs a matcher that matches a absl::string_view whose value is equal to
- // s.
- Matcher<absl::string_view>::Matcher(absl::string_view s) {
- *this = Eq(std::string(s));
- }
- #endif // GTEST_HAS_ABSL
- namespace internal {
- // Returns the description for a matcher defined using the MATCHER*()
- // macro where the user-supplied description string is "", if
- // 'negation' is false; otherwise returns the description of the
- // negation of the matcher. 'param_values' contains a list of strings
- // that are the print-out of the matcher's parameters.
- GTEST_API_ std::string FormatMatcherDescription(bool negation,
- const char* matcher_name,
- const Strings& param_values) {
- std::string result = ConvertIdentifierNameToWords(matcher_name);
- if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
- return negation ? "not (" + result + ")" : result;
- }
- // FindMaxBipartiteMatching and its helper class.
- //
- // Uses the well-known Ford-Fulkerson max flow method to find a maximum
- // bipartite matching. Flow is considered to be from left to right.
- // There is an implicit source node that is connected to all of the left
- // nodes, and an implicit sink node that is connected to all of the
- // right nodes. All edges have unit capacity.
- //
- // Neither the flow graph nor the residual flow graph are represented
- // explicitly. Instead, they are implied by the information in 'graph' and
- // a vector<int> called 'left_' whose elements are initialized to the
- // value kUnused. This represents the initial state of the algorithm,
- // where the flow graph is empty, and the residual flow graph has the
- // following edges:
- // - An edge from source to each left_ node
- // - An edge from each right_ node to sink
- // - An edge from each left_ node to each right_ node, if the
- // corresponding edge exists in 'graph'.
- //
- // When the TryAugment() method adds a flow, it sets left_[l] = r for some
- // nodes l and r. This induces the following changes:
- // - The edges (source, l), (l, r), and (r, sink) are added to the
- // flow graph.
- // - The same three edges are removed from the residual flow graph.
- // - The reverse edges (l, source), (r, l), and (sink, r) are added
- // to the residual flow graph, which is a directional graph
- // representing unused flow capacity.
- //
- // When the method augments a flow (moving left_[l] from some r1 to some
- // other r2), this can be thought of as "undoing" the above steps with
- // respect to r1 and "redoing" them with respect to r2.
- //
- // It bears repeating that the flow graph and residual flow graph are
- // never represented explicitly, but can be derived by looking at the
- // information in 'graph' and in left_.
- //
- // As an optimization, there is a second vector<int> called right_ which
- // does not provide any new information. Instead, it enables more
- // efficient queries about edges entering or leaving the right-side nodes
- // of the flow or residual flow graphs. The following invariants are
- // maintained:
- //
- // left[l] == kUnused or right[left[l]] == l
- // right[r] == kUnused or left[right[r]] == r
- //
- // . [ source ] .
- // . ||| .
- // . ||| .
- // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ .
- // . || | | .
- // . |\---> left[1]=-1 \--> right[1]=0 ---\| .
- // . | || .
- // . \----> left[2]=2 ------> right[2]=2 --\|| .
- // . ||| .
- // . elements matchers vvv .
- // . [ sink ] .
- //
- // See Also:
- // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
- // "Introduction to Algorithms (Second ed.)", pp. 651-664.
- // [2] "Ford-Fulkerson algorithm", Wikipedia,
- // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
- class MaxBipartiteMatchState {
- public:
- explicit MaxBipartiteMatchState(const MatchMatrix& graph)
- : graph_(&graph),
- left_(graph_->LhsSize(), kUnused),
- right_(graph_->RhsSize(), kUnused) {}
- // Returns the edges of a maximal match, each in the form {left, right}.
- ElementMatcherPairs Compute() {
- // 'seen' is used for path finding { 0: unseen, 1: seen }.
- ::std::vector<char> seen;
- // Searches the residual flow graph for a path from each left node to
- // the sink in the residual flow graph, and if one is found, add flow
- // to the graph. It's okay to search through the left nodes once. The
- // edge from the implicit source node to each previously-visited left
- // node will have flow if that left node has any path to the sink
- // whatsoever. Subsequent augmentations can only add flow to the
- // network, and cannot take away that previous flow unit from the source.
- // Since the source-to-left edge can only carry one flow unit (or,
- // each element can be matched to only one matcher), there is no need
- // to visit the left nodes more than once looking for augmented paths.
- // The flow is known to be possible or impossible by looking at the
- // node once.
- for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
- // Reset the path-marking vector and try to find a path from
- // source to sink starting at the left_[ilhs] node.
- GTEST_CHECK_(left_[ilhs] == kUnused)
- << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
- // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
- seen.assign(graph_->RhsSize(), 0);
- TryAugment(ilhs, &seen);
- }
- ElementMatcherPairs result;
- for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
- size_t irhs = left_[ilhs];
- if (irhs == kUnused) continue;
- result.push_back(ElementMatcherPair(ilhs, irhs));
- }
- return result;
- }
- private:
- static const size_t kUnused = static_cast<size_t>(-1);
- // Perform a depth-first search from left node ilhs to the sink. If a
- // path is found, flow is added to the network by linking the left and
- // right vector elements corresponding each segment of the path.
- // Returns true if a path to sink was found, which means that a unit of
- // flow was added to the network. The 'seen' vector elements correspond
- // to right nodes and are marked to eliminate cycles from the search.
- //
- // Left nodes will only be explored at most once because they
- // are accessible from at most one right node in the residual flow
- // graph.
- //
- // Note that left_[ilhs] is the only element of left_ that TryAugment will
- // potentially transition from kUnused to another value. Any other
- // left_ element holding kUnused before TryAugment will be holding it
- // when TryAugment returns.
- //
- bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
- for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
- if ((*seen)[irhs]) continue;
- if (!graph_->HasEdge(ilhs, irhs)) continue;
- // There's an available edge from ilhs to irhs.
- (*seen)[irhs] = 1;
- // Next a search is performed to determine whether
- // this edge is a dead end or leads to the sink.
- //
- // right_[irhs] == kUnused means that there is residual flow from
- // right node irhs to the sink, so we can use that to finish this
- // flow path and return success.
- //
- // Otherwise there is residual flow to some ilhs. We push flow
- // along that path and call ourselves recursively to see if this
- // ultimately leads to sink.
- if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
- // Add flow from left_[ilhs] to right_[irhs].
- left_[ilhs] = irhs;
- right_[irhs] = ilhs;
- return true;
- }
- }
- return false;
- }
- const MatchMatrix* graph_; // not owned
- // Each element of the left_ vector represents a left hand side node
- // (i.e. an element) and each element of right_ is a right hand side
- // node (i.e. a matcher). The values in the left_ vector indicate
- // outflow from that node to a node on the right_ side. The values
- // in the right_ indicate inflow, and specify which left_ node is
- // feeding that right_ node, if any. For example, left_[3] == 1 means
- // there's a flow from element #3 to matcher #1. Such a flow would also
- // be redundantly represented in the right_ vector as right_[1] == 3.
- // Elements of left_ and right_ are either kUnused or mutually
- // referent. Mutually referent means that left_[right_[i]] = i and
- // right_[left_[i]] = i.
- ::std::vector<size_t> left_;
- ::std::vector<size_t> right_;
- GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
- };
- const size_t MaxBipartiteMatchState::kUnused;
- GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
- return MaxBipartiteMatchState(g).Compute();
- }
- static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
- ::std::ostream* stream) {
- typedef ElementMatcherPairs::const_iterator Iter;
- ::std::ostream& os = *stream;
- os << "{";
- const char* sep = "";
- for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
- os << sep << "\n ("
- << "element #" << it->first << ", "
- << "matcher #" << it->second << ")";
- sep = ",";
- }
- os << "\n}";
- }
- bool MatchMatrix::NextGraph() {
- for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
- for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
- char& b = matched_[SpaceIndex(ilhs, irhs)];
- if (!b) {
- b = 1;
- return true;
- }
- b = 0;
- }
- }
- return false;
- }
- void MatchMatrix::Randomize() {
- for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
- for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
- char& b = matched_[SpaceIndex(ilhs, irhs)];
- b = static_cast<char>(rand() & 1); // NOLINT
- }
- }
- }
- std::string MatchMatrix::DebugString() const {
- ::std::stringstream ss;
- const char* sep = "";
- for (size_t i = 0; i < LhsSize(); ++i) {
- ss << sep;
- for (size_t j = 0; j < RhsSize(); ++j) {
- ss << HasEdge(i, j);
- }
- sep = ";";
- }
- return ss.str();
- }
- void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
- ::std::ostream* os) const {
- switch (match_flags()) {
- case UnorderedMatcherRequire::ExactMatch:
- if (matcher_describers_.empty()) {
- *os << "is empty";
- return;
- }
- if (matcher_describers_.size() == 1) {
- *os << "has " << Elements(1) << " and that element ";
- matcher_describers_[0]->DescribeTo(os);
- return;
- }
- *os << "has " << Elements(matcher_describers_.size())
- << " and there exists some permutation of elements such that:\n";
- break;
- case UnorderedMatcherRequire::Superset:
- *os << "a surjection from elements to requirements exists such that:\n";
- break;
- case UnorderedMatcherRequire::Subset:
- *os << "an injection from elements to requirements exists such that:\n";
- break;
- }
- const char* sep = "";
- for (size_t i = 0; i != matcher_describers_.size(); ++i) {
- *os << sep;
- if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
- *os << " - element #" << i << " ";
- } else {
- *os << " - an element ";
- }
- matcher_describers_[i]->DescribeTo(os);
- if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
- sep = ", and\n";
- } else {
- sep = "\n";
- }
- }
- }
- void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
- ::std::ostream* os) const {
- switch (match_flags()) {
- case UnorderedMatcherRequire::ExactMatch:
- if (matcher_describers_.empty()) {
- *os << "isn't empty";
- return;
- }
- if (matcher_describers_.size() == 1) {
- *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
- << " that ";
- matcher_describers_[0]->DescribeNegationTo(os);
- return;
- }
- *os << "doesn't have " << Elements(matcher_describers_.size())
- << ", or there exists no permutation of elements such that:\n";
- break;
- case UnorderedMatcherRequire::Superset:
- *os << "no surjection from elements to requirements exists such that:\n";
- break;
- case UnorderedMatcherRequire::Subset:
- *os << "no injection from elements to requirements exists such that:\n";
- break;
- }
- const char* sep = "";
- for (size_t i = 0; i != matcher_describers_.size(); ++i) {
- *os << sep;
- if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
- *os << " - element #" << i << " ";
- } else {
- *os << " - an element ";
- }
- matcher_describers_[i]->DescribeTo(os);
- if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
- sep = ", and\n";
- } else {
- sep = "\n";
- }
- }
- }
- // Checks that all matchers match at least one element, and that all
- // elements match at least one matcher. This enables faster matching
- // and better error reporting.
- // Returns false, writing an explanation to 'listener', if and only
- // if the success criteria are not met.
- bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
- const ::std::vector<std::string>& element_printouts,
- const MatchMatrix& matrix, MatchResultListener* listener) const {
- bool result = true;
- ::std::vector<char> element_matched(matrix.LhsSize(), 0);
- ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
- for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
- for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
- char matched = matrix.HasEdge(ilhs, irhs);
- element_matched[ilhs] |= matched;
- matcher_matched[irhs] |= matched;
- }
- }
- if (match_flags() & UnorderedMatcherRequire::Superset) {
- const char* sep =
- "where the following matchers don't match any elements:\n";
- for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
- if (matcher_matched[mi]) continue;
- result = false;
- if (listener->IsInterested()) {
- *listener << sep << "matcher #" << mi << ": ";
- matcher_describers_[mi]->DescribeTo(listener->stream());
- sep = ",\n";
- }
- }
- }
- if (match_flags() & UnorderedMatcherRequire::Subset) {
- const char* sep =
- "where the following elements don't match any matchers:\n";
- const char* outer_sep = "";
- if (!result) {
- outer_sep = "\nand ";
- }
- for (size_t ei = 0; ei < element_matched.size(); ++ei) {
- if (element_matched[ei]) continue;
- result = false;
- if (listener->IsInterested()) {
- *listener << outer_sep << sep << "element #" << ei << ": "
- << element_printouts[ei];
- sep = ",\n";
- outer_sep = "";
- }
- }
- }
- return result;
- }
- bool UnorderedElementsAreMatcherImplBase::FindPairing(
- const MatchMatrix& matrix, MatchResultListener* listener) const {
- ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
- size_t max_flow = matches.size();
- if ((match_flags() & UnorderedMatcherRequire::Superset) &&
- max_flow < matrix.RhsSize()) {
- if (listener->IsInterested()) {
- *listener << "where no permutation of the elements can satisfy all "
- "matchers, and the closest match is "
- << max_flow << " of " << matrix.RhsSize()
- << " matchers with the pairings:\n";
- LogElementMatcherPairVec(matches, listener->stream());
- }
- return false;
- }
- if ((match_flags() & UnorderedMatcherRequire::Subset) &&
- max_flow < matrix.LhsSize()) {
- if (listener->IsInterested()) {
- *listener
- << "where not all elements can be matched, and the closest match is "
- << max_flow << " of " << matrix.RhsSize()
- << " matchers with the pairings:\n";
- LogElementMatcherPairVec(matches, listener->stream());
- }
- return false;
- }
- if (matches.size() > 1) {
- if (listener->IsInterested()) {
- const char* sep = "where:\n";
- for (size_t mi = 0; mi < matches.size(); ++mi) {
- *listener << sep << " - element #" << matches[mi].first
- << " is matched by matcher #" << matches[mi].second;
- sep = ",\n";
- }
- }
- }
- return true;
- }
- } // namespace internal
- } // namespace testing
|